
AD-A104 320 CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF CIVIL ENG--ETC FIG 12/1
A TWO-STEP APPROACH TO FINITE ELEMENT ORDERING.(U)
AUG $I S J FENVES, K H LAW N00014-76C-0354

UNCLASSIFIED R781-130 NL

EhIIEEEEEEIIIE
llIhlllEEEEEEI
IIIIIIIIIII

LEIEVrr
A TWO-STEP APPROACH TO FINITE ELEMENT ORDERING

w by

Steven J. Fenves

K.ncho L Law

A Technical Reort of
Research Sponsored by

THE OFFICE OP NAVAL RESEARCH
DEPARTMENT OF THE NAVY
Contract No. N00014-76-C-0354

August 1981

Devamm~.of Civil Eugineering DT1C
Carnegie-Mellon University O ELECTIE

Pittsburgh. PannsylvaaEP7' ,SEP 17 1981,i

D
R-81-130

DEPARTMENT OF CIVIL ENGINEERING

CARNEGIE INSTITUTE OF TECHNOLOGY

Carnegie -Mellon University
DIS'rIBUTloIrJ 13ATEMIINT A
Approved for public release;

IDistribution Unlimited

17 05

A TWO-STEP APPROACH TO FINITE ELEMENT 6 RDERING,

/ . Steven J Fenves

Kincho IL Law

A Technical Report of
Research Sponsored by

THE OFFICE OF NAVAL RESEARCH
DEPARTMENT OF THE NAVY
Contract No.,IO N0014-76-C-0354

A ugWP8l
'Accession For -

NTIS GRA ..
DTIC TABi
Unannounced Department of Civil Engineering
Just if icat I on.._- Carnegie-Mellon University

Pittsburgh. Pennsylvama

-Distritution/ !

Availcb 1lity CGac..3
Avail and/or (

Dit Specil , R-81-130

.

I *

Table of Contents

Summary I
Introduction 1
Graph Theory Notation and Sparse Matrix Study 3

Symmetric Matrices and Finite Graphs 3
Finite Element Mesh and Its Solution Graph
Matrix Factorization and Its Graph Theoretic Model 6
The Cuthill-McKee and the Reverse Cuthill-McKee Ordering Algorithms 8

A Two-Step Approach to Finite Element Ordering 10
Representation of Finite Element Connectivity 10
Ordering the Finite Elements 12
Ordering the Nodal Variables 12

Experimental Results 14
Discussion 16
Acknowledgement 18
References 19
Figures 20
Tables 20
Appendix I. Fortran Computer Program for Labelling the Nodal Variables 32
Appendix II. Fortran Computer Program for Generating the Adjacency Structure Pair 34

of Element-Element Connectivity

ii

LIST OF FIGURES

Figure 1: Finite Element Mesh and Its Associated Finite Element Solution Graph 21
Figure 2: Matrix Factorization 22
Figure 3: Finite Element Model and Its Associated Finite Element Connectivity Graph 23
Figure 4: Finite Element Models with Uncommon Connectivlties 24
Figure 5: Ordering the Finite Elements by the Cuthill-McKee Algorithm 25
Figure 6: The Node Ordering of a 5 by 5 Regular Mesh with 10-Node Triangular 26

Finite Elements
Figure 7: Finite Element Models 27
Figure 8: Examples of Adjacency Structure Pair 29

LIST OF TABLES

Table I: Extension Time (msec) for RCM Algorithm and Two-Step Ordering Scheme 30
-Table 2: Structure of Matrix Factor L Resulting from the RCM algorithm and the 31

Two-Step Ordering Scheme

SUMMARY

A two-step approach to finite element ordering is introduced. The scheme involves ordering of

the finite elements first, based on their adjacency, followed by a local numbering of the nodal

variables. The ordering of the elements is performed by the Cuthill-McKee algorithm. This

approach takes into consideration the underlying structure of the finite element mesh. and may be

regarded as a "natural" finite element ovdering scheme. The experimental results show that this

two-step scheme is more efficient than the reverse Cuthill-McKee algorithm applied directly to the

nodes, in terms of both execution time and the number of fill-in entries, particularly when higher

order finite elements are used. In addition to its efficiency, the two-step approach increases

modularity and flexibility in finite element programs, and possesses potential application to a

number of fimte element solution methods.

INTRODUCTION

The use of finite element methods typically involves solving a system of equilibrium equations

K u R I)

where u and R are, respectively, the displacement and the loading vectors. K is the global

stiffness matrix which is often symmetric, positive definite, and populated with many zeros. In

the solution process, it is important to take into account the structure of the matrix K. i.e. the

pattern of the zero and nonzero entries so that the computational effort is minimized.

The solution pfrocess for solving Equation I car be divided into four separable tasks' 2

1. Ordering - to find a proper permutation matrix P, such that the symmetric permuted

matrix PKP' has a desirable structure.

2. Storage allocation - to determine the necessary information about the structure of the

matrix factor of PKP' and to set up the storage scheme.

3. Numeric factorization - to decompose the permuted matrix PKP ' into a triple matrix

product LDLt .

4. Solution - to compute the solution vector u successively by a forward substitution,

z = L'(PR). and a backward substitution, u - P(L'D'Zz).

The identification of these four separabie tasks not only encourages software modularity. but also

2

facilitates the theoretical study of sparse matrices. This paper focuses on the first task, that of

ordering of a system of equilibrium equations resulting from finite element discretization.

When the matrix K is decomposed into its matrix factors L and D, it typically suffers some

fill-in: that is, the filled matrix. F * L + V. has nonzeros in positions which are zero in K. One

objective in ordering a matrix is to minimize the number of these fill-in entries. By doing so,

the computing cost may also be reduced since the amount of computation depends on the number

of nonzeros in the matrix factor L

A finite element mesh consists of a collection of finite elements which are connected at their

common boundaries. The discretization of the mesh and the finite elements are selected so that

the behavior of the physical structure under examination can be properly modelled. The nodal

variables are then defined on the finite element mesh, their number depends on the type of finite

elements used. Traditionally, most ordering schemes have been developed for ordering directly the

nodal variables and, hence, the equilibrium equations in 1. Very little effort has been reported in

developing ordering schemes which include consideration of the underlying topological structure of

the finite element mesh.

One solution scheme specifically designed for solving a system of equations resulting from finite

element problems is the frontal solution method 4 . This method is often considered as the most

"natural" solution scheme since it operates directly on the underlying structure of the finite

element mesh. In this solution scheme, the fiite elements are assembled and entered into the

solution one at a time. A nodal variable is eliminated as soon as all the neighboring finite

elements incident to it are available. The remaining assembled nodal variables, which are not yet

ready for elimination, are retained in the "front". or "active front".

Another solution scheme which is similar to the frontal solution method is the so-called

generalized element method2 0 . In this method, the nodal variables of an active front are treated

as a superelement. Multiple fronts are allowed, and each front is treated as a superelement.

This method has recently attracted attention from numerical analysts 6. The merit of the frontal

solution and the generalized element methods is that both can be extended to include

3

considerations of auxiliary storage in a simple manner.

Obviously, the efficiency of the frontal solution and the generalized element methods depends on

the order in which the finite elements are numbered. The ordering of the nodal variables is

implicitly imposed by the order in which the finite elements are processed. To the authors'

knowledge, there have not been any studies reported for ordering the finite elements directly. In

this paper, we attempt to examine the feasibility of ordering the finite elements.

It will be shown that ordering the finite elements has considerable computational advantage over

ordering the nodal variables, but that ordering the finite elements alone does not completely define

the permutation matrix P. It is therefore necessary to include into the ordering scheme a local

ordering strategy for numbering the nodal variables of each finite element so that the number of

fill-in entries can be minimized. This "two-step" approach, which includes the ordering of the

finite elements as well as of the nodal variables, is the subject of this paper.

GRAPH THEORY NOTATION AND SPARSE MATRIX STUDY

The use of graph-theoretic approaches has found many applications in sparse matrix study.

Although few results from graph theory are directly applicable to the study of sparse matrices,

the graph representation is, nonetheless, a powerful tool to characterize the structure of a sparse

matrix.

Symmetric Matrices and Finite Graphs

A finite undirected graph G=(V,E) consists of a finite set V of n elements, called nodes, and

a set E of unordered pairs of distinct nodes (v Iv). called edges. For any node v in G, the set
I J

of nodes adjacent to v, adj(v), is defined as

adj(v) = { v f V : (v.v) e E }.

The number of nodes in adj(v), denoted by 1adj(v) , is called the degree of v. The deficiency

of v, def(v), is the set of distinct pairs of nodes in adj(v) which are not themselves adjacent. A

graph is complete if every pair of nodes is adjacent. A subgraph G'=(V',E') of G is a graph

for which V' c V and E' c E. A complete subgraph is called a clique. A section graph

G(V') is a -subgraph G=(V'.E(V')) induced by a node set V', where

4

E(V') = { (v,v) e E 1 v,v, E V'}
I J I j

If a set of nodes V' is deleted from the graph GZ(VE), the section graph G(V\V") is obtained

from G by removing the nodes V" together with their incident edges.

A (simple) path Iv i. v.} is a sequence of distinct nodes and continuous edges leading from

v. to v such that there are no repeating edges. A graph G is said to be connected if there is

at least one path between every pair of distinct nodes in G; otherwise, G is disconnected. A

connected subgraph is called a component. The distance d(v ,v) between two nodes v and v

in a connected graph is the number of edges in the shortest path joining nodes v and v. The

eccentricity e(v) of a node v is then given by

e(v) - max { d(vv) v V 1.i i

The diameter 5(G) of the graph G=(V,E) is defined as

R(G) max { e(v), v F V).

A node v is said to be a peripheral node if e(v) = 5(G).

For a graph G=(VE) with n nodes, an ordering (or labelling) of V is a bijection (a one-to-

one onto mapping) :

a : 1 1, 2 n I <-> V.

The ordered graph of (is denoted by Ga a (VE.a). The integer, ranging from 1 to n.

assigned to a node by the ordering is called the number or label of that node.

The notation of a level structure- is commonly used to describe the properties of many

ordering schemes. A level structure LS of a graph G is an arrangement of the nodes of G into

m levels, ordered LS LS , such that nodes at a given level LS are connected to no nodesIm I;

other than LS k-' LS Iand LS . For a node v E V, there corresponds a level structure rooted

at v. The levels of the rooted level structure are determined by

1. assigning LS = {v, and

2. for k > 1. assigning to LSk the set of nodes adjacent to nodes in LS which havek-I

not yet been included in any previous levels.

Given an a by n symmetric matrix K. there corresponds to it a finite graph G=(VE), where a

node v e V denotes the im row (or column) of the matrix K. and an edge (v,v) E
Ii

5

symbolizes an offdiagonal nonzero entry K (z K). An ordering of the graph G of matrix K isIJ j

equivalent to a symmetric permutation PKPL, where P is an n by n permutation matrix. The

unordered graphs (in which nodes are not labelled) of K and PKP' are the same. but the node

numbers of the associated ordered graphs are different.

Finite Element Mesh and Its Solution Graph

A finite element mesh is a collection of finite elements in which the adjacent finite elements

are joined at their common boundaries or vertices. There is a node at each vertex of the finite

element mesh. For finite elements of higher order, where higher order polynomial interpolation

functions are used, there may also be nodes lying along the sides or on the faces of the finite

elements, and/or located internally within the finite element itself. The nodes situated at the

interior of the finite element are referred as the internal variables, and the nodes located along

the boundaries are called the external variables.

Associated with each node is a set of variables corresponding to the degrees of freedom defined

at that node. This set of variables, in turn, corresponds to a submatrix in the global stiffness

matrix, which is typically full. During assembly and solution, this submatrix can conveniently be

treated as a single entity. For simplicity, the set of variables at a node is referred as the nodal

variable.

The finite element mesh can be transformed directly into the finite graph G representing the

structure of the global stiffness matrix. We call this graph a finite element solution graph,

or, simply. a solution graph (to distinguish it from the finite element connectivity graph to be

introduced below). The nodes of the solution graph are the nodal variables defined on the finite

element mesh. The edges of the solution graph are constructed by making the nodes of each

finite element pairwise adjacent, since a nonzero entry K in the global stiffness matrix K implies

that the ih and the j'h nodal variables share at least one incident finite element. In other words.

if V' denotes the set of nodal variables belonging to one finite element, the section graph G(V')

of the solution graph G is a clique, the union of the cliques over all elements defines the edges

in the solution graph. Examples of transforming a finite element mesh into its associated solution

6

graph are shown in Figure 1.

Matrix Factorization and Its Graph Theoretic Model

The factorization of K can be symbolically modelled using a graph-theoretic approach. This

approach is particularly helpful in understanding how the fill-in entries are created during

factorization.

The most fundamental scheme of matrix factorization is one analogous to Gaussian elimination,

summarized in Figure 2. At the izb step of the factorization, the i'h column of L and the iLh

diagonal entry of D are computed, and the matrix K' is condensed and modified to K""'. It is

in the condensation that the fill-in entries, if any, are created.

Using the finite graph representation of a sparse matrix, the factorization scheme can be

modelled graph-theoretically as a node-elimination process]&. Upon elimination of node v. the

elimination graph G is obtained from G=(V.E) by

1. deleting node v and its incident edges:

2. adding auxiliary (fill-in) edges such that all adjacent nodes of v form a clique.

That is,

G (V\v, E(V\v) U def(v)).

For an ordered graph Ga , the elimination is a recursive process defined by

P(Ga) { Go l G- I

where G is called the ib' elimination graph obtained by eliminating v from G . The fill-in

edges created during the elimination of v , denoted by f. are the def(v) in G . These fill-in

edges correspond to the new nonzero entries introduced into the condensed matrix K"', at the i0b

step of the factorization.

In a fPute element soiution graph. the new clique formed by the elimination of a node can be

treated as a new finite elemenL called a generalized element or a superelement -0 . The node-

elimination process on a finite element graph can thus be interpreted as a series of transformation

of the finite elements into the superelements. This elimination model also suggests an interesting

characteristic related to higher order finte elements. Internal nodes of a higher order element are

connected only to the external nodes of that element. Furthermore, all nodes in a finite element

form a clique. Hence, if an internal node is eliminated before any of the external nodes of the

same element, there is no fill-in since the deficiency of the internal node is null.

After elimination, the set of fill-in edges is given by

n-i
*(G)= U f.

i=l
The filled graph G F, which represents the structure of the filled matrix. F = L .L , is defined

by

G = (V, E U t(G)).F a

The node-elimination model was formally introduced by Rose' 8 . Since then, efforts have been

made to develop efficient algorithms implementing the model'9 ". These algorithms have been

encoded into sparse matrix programs such as YMSL" and Sparspak 9. The major application of

these algorithms is in the second task presented in the Introduction, namely to set up the data

structure for storing the numeric entries of the matrix factors.

A node-addition model which simulates the Cholesky factorization has recently been developed

by the authors". For tis graph-theoretic model, nodes are added onto the filled graph G F, rather

than being eliminated from the original graph Ga' The structure of the matrix factor L is

constructed one row at a time. When computing the entries of a particular row in L. the model

does not require any a priori information for the rows beyond the current row. Therefore, this

model has the flexibility that the tasks of labelling a nodal variable, determining its row structure

in L, and computing the numeric entries of the row can all be performed simultaneously.

The execution times for the numeric factorization as well as the symbolic factorization of a

given matrix K depend on the number of nonzeros in the matrix factor L. Therefore, it is

worthwhile to develop efficient algorithms to order the matrix K so that the number of fill-in

entries, or equivalently the number of nonzeros in L, is minimized. In the next section, two well

known ordering algorithms, namely the Cuthill-McKee algorithm and the reverse Cuthill-McKee

algorithm, are discussed.

8

The Cuthill-McKee and the Reverse Cuthill-McKee Ordering Algorithms

Let K be an n by n symmetric matrix. For the it row of K. define

o(K) min { j 1K 0
Ij

and

,8K) i W.

The number o (K) denotes the column subscript of the first nonzero entry in the i'h row of
I

matrix K. The number 8 (K) is usually referred as the local bandwidth of the i'h row of

matrix K. and is equal to the number of off-diagonal entries between the first nonzero of the

row and the main diagonal. The bandwidth and the profile of matrix K are defined as

b(K) = max { 8(K) 1. .. n

and

n
p(K) = 1 6,(K)

i=1

respectively. The nonzero entries of the filled matrix F of K are confined within the local band

of each row. Many ordering schemes have been developed to minimize the bandwidth or the

profile of K.

One ordering scheme commonly used with finite element programs to minimize the bandwidth is

the Cuthill-McKee algorithm 4. Basically, the algorithm is a breadth-first technique in labelling

the nodes of a graph. Once a finite element mesh is tranformed into its finite element solution

graph. the algorithm numbers the nodes in the following way.

1. Determine a starting node and number it v.

2. For nodes v, i .. find all unlabelled neighboring nodes of the node v and

number them sequentially in increasing order of degree.

This ordering algorithm is essentially the same as that for generating a level structure rooted at

the starting node v.

In selecting a starting node, a peripheral node is preferred 13. The idea of choosing a peripheral

node as a starting node is to generate as many levels as possible in the level structure. since an

increase in the number of levels tends to decrease the profile of the corresponding matrix.

Unfortunately, existing algorithms for finding a peripheral node are not computationally feasible.

9

A compromise that has been suggested is to choose a starting node with high eccentricity. This

node is generally referred as a pseudo-peripheral node. An efficient algorithm to find a

pseudo-peripheral node has been suggested and implemented by George and Liul° . For most

practical cases, the execution time for finding a pseudo-peripheral node is no greater than

O(: E), i.e., the order of the number of edges in the graph G=(V,E).

George eLal.12 have shown that if linear insertion is used for sorting the time complexity for

the second step of the Cuthill-McKee algorithm requires at most

(4tE + 2cmraE) operations,

where 1 E: is the number of edges in the graph G, m is the maximum degree of any node. and c

is some constant.

It has been discovered that significant improvements in minimizing the profile can be achieved

by simply reversing the node ordering obtained from the Cuthill-McKee algorithms . The resulting

algorithm is the well known reverse Cuthill-McKee (RCM) algorithm, which can be summarized

as follows :

1. number the nodes by the Cuthill-McKee algorithm: and

2. reorder the nodes by reversing the node numbering obtained in Step i.

To reverse the ordering of n nodes requires only n operations. Therefore, the overall complexity

of the RCM algorithm remains bounded by O(mE2).

It has been proved by Liu and Sherman that the RCM algorithm is never inferior to the

Cuthill-McKee algorithm 6 . In its application to finite element ordering, they 'also found that the

RCM algorithm is particularly superior when finite elements of higher orders are used.

A listing of computer subroutines for the RCM algorithm can be found in reference 12. A

more detailed description of the algorithm can also be found in that reference.

10

A TWO-STEP APPROACH TO FINITE ELEMENT ORDERING

In this section, we present a "two-step" approach to finite element ordering. The ordering

process is divided into two separate tasks. The first task orders the finite elements in the finite

element mesh. The second task then labels the nodal variables.

Representation of Finite Element Connectivity

The method to be described requires an explicit representation of the connectivity of the finite

elements in the mesh. The connectivity of the finite elements can be topologically represented as

a graph, we call this graph a finite elerent connectivity graph, or. simply, a connectivity

graph. The nodes in the connectivity graph correspond to the finite elements in the mesh. The

edges of the connectivity graph are used to describe the interconnections between the finite

elements. One possible way to define the interconnections between the finite elements is to say

that two finite elements are adjacent if they share a common node in the mesh. This definition.

however. may lead to a huge number of edges in the connectivity graph. Since the efficiency of

most existing ordering algorithms is a function of the number of edges in the graph. this

representation of fuute element connectivity may suffer a significant drawback in terms of the

execution time required for ordering the finite elements. Here, we examine an alternative

definition in which the number of edges in the finite element connectivity graph can be vastly

reduced.

In finite element methods, a continuum is subdivided by imaginary lines or surfaces into a

number of finite elements. These elements are assumed to be interconnected at the vertices

situated on their boundaries. Therefore, it is simple to assert that the finite elements are

topologically interconnected by their boundaries. A finite element of n dimensions, where

n = 1.2.3. posseses boundaries of (n-l) dimensions. For instance, the boundaries of a 3-

dimensional (volumetric) finite element are the 2-dimensional boundary-faces. so that in a .3-

dimensional continuum, the volumetric finite elements are interconnected by their boundary-faces.

In the same fashion, 2-dimensional (planar) finite elements are bounded and interconnected by

their I-dimensional boundary-lines, and 1-dimensional (linear) finite elements are connected to

their adjacent elements through the 0-dimensional boundary-nodes. Hence. in a finite element

~11

mesh. two finite elements are said to be adjacent if they are connected at their boundaries, rather

than at their vertices. Using this definition, the nodes in the finite element connectivity graph are

the finite elements in the finite element mesh, while the edges connecting the nodes in the

connectivity graph correspond to the imaginary boundaries of the finite elements separating the

continuum. Examples of finite element meshes and their associated connectivity graphs are shown

in Figure 3. For a two-dimensional (planar) continuum, it is interesting to note that the finite

element connectivity graph is analogous to the dual of a planar graph5, with the exterior node in

the dual graph onitted. In general, the element-element connectivity relationship is topologically

equivalent to the definition of a dual of an n-dimensional complex -3' 3

In some cases, the connectivity of finite elements cannot be completely represented using the

definition given above. As shown in Figure 4(a), n-dimensional finite elements may not

necessarily be connected through all their (n-i)-dimensional boundaries. Another example may be

that the adjacent finite elements do not have the same geometric dimensions, as illustrated in

Figure 4(b). Nevertheless, the transformation process described is still valid and applicable to

these cases; the resulting finite element connectivity graph may at worst become a disconnected

graph. Each connected component in the connectivity graph can be labelled independently by the

method presented. The nodes at the interface between two connected components must then be

numbered higher than all other nodes in the two components. The examples just described are not

very common in practice, and will not be pursued further.

There are several major advantages in defining the connectivity of the finite elements by means

of their boundaries, instead of their nodes. First, the number of edges in the connectivity graph

is minimized. Furthermore, this definition completely disregards the nodal variables, or vertices.

in the finite element mesh. Therefore, the ordering of finite elements can be performed before

the types of finite elements, and thus the number of nodal variables, are chosen.

12

Ordering the Finite Elements

Once the adjacency structure of a connectivity graph has been established. the Cuthill-McKee

algorithm can be applied to number the nodes of the connectivity graph. which correspond to the

fimite elements in the mesh. An example of a 5 by 5 regular mesh with triangular finite

elements is shown in Figure 5(a). The mesh is first transformed into its connectivity graph

shown in Figure 5 o). The nodes in the connectivity graph are ordered by the Cuthill-McKee

algorithm. The resulting ordering of the finite elements is given in Figure 5(c).

As noted, earlier, the time comple.xty of the Cuthill-McKee algorithm is a function of the

number of edges in a graph. For a given finite element mesh, the number of edges in the

associated connectivity graph is considerably less than the number of edges in its finite element

solution graph defined previously. When higher order finite elements are used. the difference is

even more dramatic, since the number of edges in a finite element solution graph increases

combinatorially with the number of nodal variables per finite element. On the other hand, the

number of edges in the finite element connectivity graph remains constant for a given

discretization of the finite element mesh.

Let the finite element mesh consist of ne finite elements, and let nb denote the number of

boundaries of finite element i. The overall time complexity of the Cuthill-McKee algorithm.

following from the previous discussion, is 0(m;E:). where in is the largest value of nb.

= he, and !Ei is the total number of internal boundaries interconnecting the finite

elements.

Ordering the Nodal Variables

A good ordering of the finite elements does not automatically guarantee a good node ordering.

in the sense that the number of fill-m entries is minimized. The ordering of the finite elements

does not complete the ordering of K, as the nodal variables associated with the element do not

acquire labels by this process. Therefore, one must also consider the ordering of the nodal

variables. The proposed strategy is to label the nodal variables of the finite elements following

the order in which the finite elements are numbered. For each finite element, the nodal variables

Ir

13

are ordered according to their valencies. where the valency of a node is the number of finite

elements incident at that node. The nodal valency is an indicator of the degree of a node.

The local ordering scheme to label the nodal variables is summarized as follows

1. Determine the nodal valency for each node in the finite element mesh.

2. (Main loop) Enter the finite elements one at a time following the order in which the

finite elements were previously numbered by applying the Cuthill-McKee algorithm to

the connectivity graph. For each finite element, find all unlabelled nodes connected

to it and number them sequentially in descreasing order of their valencies.

3. (Reverse ordering) Reverse the ordering of the nodal variables obtained in Step 2.

In Step 2 of the local ordering scheme, a nodal variable with minimum valency among the

unlabelled nodal variables in a finite element is numbered last. The node ordering obtained is

then reversed in Step 3. The motivation behind these two steps is that the nodal variables with

the lowest valency in a finite element will be eliminated first. This strategy of minimum degree

(valency) ordering has been employed in many popular node ordering schemes, such as the

minimum degree ordering algorithm' s and the Cuthill-McKee algorithm4 , although the strategy is

used in a different manner in different schemes.

It has been mentioned that by reversing the node ordering obtained from the Cuthill-McKee

algorithm, the result can be improved significantly. This property is also true in the local

ordering scheme proposed. First, reversing the numbering of the nodal variables which are

ordered in decreasing order of their valencies ensures that internal nodal variables are numbered

before the external variables of the same element, so that the internal nodal variables are

eliminated before the external nodal variables of the same finite element. Hence, there will be no

fill-in created when eliminating the internal nodal variables. This ordering strategy also has the

property that the nodes situated along a boundary are numbered and eliminated before the corner

nodes of the same boundary. This is because the corner nodes are in general connected to more

finite elements than the nodes located along a boundary. The nodal numbering produced by the

proposed scheme for a simple example of a 5 by 5 regular mesh consisting of 10-node triangular

finite elements is shown in Figure 6. The two properties just described are clearly demonstrated

14

by this example.

For step I. given the element-node incidence table -- a listing of the nodes incident on the

finite elements -- the determination of the nodal valencies can be done in exactly

ne
1 T: nv operations,

i=l

where nv is the number of nodal variables of the i" finite element, ne is the number of finite

elements in the mesh. and T is the size of element-node incidence table.

To implement step 2, a linear insertion may be used to sort the unlabelled variables of each

finite element. For some constant c, the sorting of nv elements by linear insertion requires

c(nv2) operations'. Thus, the time complexity of Step 2 of the algorithm requires at worst

ne ne
c(nv 2) < c(- nv) nvmax = c!Tlnv operations,t i ax max

i-xl i=l

where nv = max(nv), i=l ne. The number of operations required to reverse the node
max

ordering equals to the number of nodal variables, nn, in the finite element mesh. Hence, the

time complexity for numbering the nodes, given the ordering of the finite elements, is bounded by

(0(!,T ,nv n nih).
max

EXPERIMENTAL RESULTS

In this section, we report some experimental results comparing the reverse Cuthill-McKee

algorithm and the two-step ordering algorithm. Four finite element models have been selected as

examples. They are : (I) a 5 by 5 regular mesh with triangular finite elements; (2) an L-

shaped mesh with triangular finite elements; (3) a cross-shaped mesh with rectangular finite

elements: and (4) a 2 by 2 by 2 model consisting of rectangular block finite elements. These

models are shown in Figure 7. For each model, linear, quadratic and cubic finite elements have

been used. There are altogether twelve test cases.

The computer subroutines for the RCM algorithm have been adopted from the Sparspak package

developed by George and Liu at the University of Waterloo9 and listed in Reference 12. These

subroutines include finding a pseudo-peripheral node of a graph and ordering the nodes by the

15

RCM algorithm. The input information to these subroutines is the number of nodal variables and

an adjacency structure pair representing the node connectivity of the solution graph. A node

adjacency structure is illustrated in Figure 8a.

For the two-step ordering scheme, the same set of computer subroutines from Sparspak has been

employed to number the finite elements by the Cuthill-McKee algorithm, except that the step for

reverse ordering has been omitted. In this case, the input data for the adjacency structure pair is

the node connectivity of the finite element connectivity graph. An example of this data structure

is given in Figure 8(b). Once the finite elements have been ordered, the adjacency structure can

be discarded. The subroutine for performing the second step, that of ordering the nodal variables,

is listed in Appendix I. For this subroutine, the element-node incidence table is assumed to be

available.

The test cases have been run on a DECsystem 20 computer at Carnegie-Mellon University. For

each test case, the execution times for the two-step ordering scheme and the RCM algorithm are

reported in Table i. To minimize timing errors due to a multi-programmed operating system

environment, the test cases have been run when the computer was lightly loaded. As the results

indicate, the two-step ordering scheme requires much less execution time than the RCM node

ordering algorithm, except for the cases when linear triangular finite elements are employed. For

those cases, the execution times for ordering the nodes by the RCM algorithm and for ordering

the finite elements by the Cuthill-McKee algorithm are approximately the same. The deficiency of

the two-step ordering scheme is due to the second step of labelling the nodal variables. For

cases when higher order finite elements are used. very large amounts of savings in execution

times can be achieved.

For each test case, the structures of the matrix factor L resultinc from the RCM and the two-

step ordering algorithms are summarized in Table 2. in terms of the profile of the stiffness

matrix. the number of fill-in entries and the size of the matrix factor. For almost all cases, the

profiles resulting from the two-step ordering scheme are slightly larger than those obtained from

the RCM algorithm. On the other hand, the two-step ordering scheme, in most cases. leads to

less fill-in than the RCM algorithm. This result is particularly true for finite element meshes

16

%%here hic-her order finite- elemnents are used.

DISCUSSION

In this5 paper. a "tw'o-step" finite- elemenut ordering scheme has btzen introduced. In addition to

the efficiency achieved. the scheme is also highly adaptabie to various solution methods commonly

used in finite element analysis.

The maj~or characteristic of the two-step ordering sche~me is thal ordcrinz thr fin:tt eltementS

and orderinc the nodal variables are separated into two independent tasks. The two tas'.Ks -an 'o-

.mpiemented as twvo senarate modules. This pr operty of modularity provides flexibility in tne

software design of finite element programs. For instance, one can choose to number th- finit

elements once the d,.scretization of the finite element mesh is established. even; w ithout the

knowltdce about the types of finite elements to be used. in %viewk of current soiiware

developments in generating finite element meshes using graphic prtproczesssors. !t tas.% of

numberine the finite elements can easily be incorpiorated as an additional modulz in lt mcesh

cenerator with very little extra cost.

The authors recognize that the two-step ordering schemne presented require.s two, sets of :nput

data: one, to describe the adjacency of the finmte elements and the se-cond for the: ehemce-i*.-idxi

incidence table. These two sets of data can both be cenerated by a .- esh generaloz.

Conventionally, however, only the element-node incidence table is created. In Apendix l, %;e

present a computer program to determine the element-element adia:cencNy structure- pair using the

element-node incidence table as input. This computer program serves primnaritv for ilustrat-.on

purposes. and is not mneanit to be efficient. Th-, authors em~phasize tha: tht finitze lemient

adjacency structure should be generated by the mesh ctnerat or. particula.-l Wh 'r, a rhil

preprocessor is used.

Since the birth ofl the finite element methods, efforts have been made to dtveiop finite elemients

using polynomial mterpolatuon functions of hcher orders. The exeiettresults favor strongly

the use of the two-step ordering scheme with higher order finit.- elements. In many finite

-iemnent problems. the finit- elemnts are progessively- modf.-ec by us',nc inlcr~'ollaton funct:ons

17

of increasingly higher order so as to improve the accuracy of the solution. At each modification.

the structure of the global stiffness matrix changes. but the number and the distribution of the

finite elements in the mesh often remain unchanged. Examples of these problems are quality

control in finite element analysis and nonlinear structural analysis - . For this type of problem,

the ordering of finite elements needs only be determined once. The result can be used to reorder

the nodal variables upon each modification made to the finite elements. Moreover, the step in

ordering the nodal variables by the two-step ordering scheme can be performed much faster than

a complete re-numbering by the node ordering schemes.

In large scale structural analysis, substructuring is often used to divide the structure into two

or more smaller components, called substructures, which are interconnected at their boundaries.

Topologically. the substructures can be treated in the same manner as finite elements. Therefore,

the strategy for ordering the finite elements may well be applied to the ordering of the

substructures. In substructuring analysis, the external nodal variables located along the boundaries

of the substructures are ordered last. As discussed previously, this characteristic is also embedded

in the node ordering strategy of the two-step scheme. Hence, there is no reason that the two-step

approach cannot be extended to an ordering scheme for substructuring methods.

One of the characteristics of the frontal solution method is that the assembling of the finite

elements and the solution process are performed simultaneously. For this solution method, it is

the numbering of the finite elements that really matters. However, a proper ordering of the nodal

variables for each finite element can further reduce the number of fill-in entries and, thus, the

computation cost of the solution process. In the two-step scheme presented. the strategy is to

label the nodal variables following the ordering of the finite elements, then the final node

ordering is reversed. As a result, the order in which the nodal variables are to be eliminated

ought to follow the reverse order in which the finite elements are numbered. Therefore, by

entering the finite elements in the reverse order of their numberings. the assembling and

factorization tasks can also be performed simultaneously. However, unlike the frontal solution

method. where the nodal variables are arranged in an arbitrary order, the nodal variables are pre-

ordered by the two-step ordering scheme to reduce the number of fill-in entries. This pre-

ordtrinc of the nodal variables has the advantace that the data structure- For the .natr:x fa3ctors

can be set up indepenidentlY. Throucthout the entire ordertac scheme, the strujcture of the Clohul

stiffness mair,:x need :2o[exist. With thz: nodal variables pre-ordered. one can proceed dirtcti': to

construct the daita structure for the matrix factors usinc existins symnbolic factorization alcorithms

qQConsequently. whaile this two-step ordering scheme can improve The software modularity for

finite element programs, many characteristics of the "natural" frontal solutico method can still be

retained in the solution process.

The authors do not claim that the two-step ordering schemet proposeLd in this paper,, is opt.-Mal

in minimizine the number of fill-in entries. In fact. it has recently bcen proved that thet pr-oblemr

of computing the minimum fill-in is NP-complete24 This, orderinc schem i ecmene

because of its efficiency, modularity and flexibility, and i~s potenrtial application to various other

finite element problems. Most of alt, the two-step ordermnz scheme -mncludes the CoiderZI-_ On of

the undlerlying topological structure of the finite element mesh. and may therefore be recarcied as

a "natural- finite element orderiniz scheme.

ACKCNOWNLEDGEMIENT

This work was supported by the Office- of Naval Research unier Grant NOU01I -->-C-OF-54.

19

REFERENCES

1. Aho. A.V., J.E. Hopcroft and J.D. Ullmann. The Design and Analysis of Computer
Algorithms. Addison-Wesley Publishing Company, 1974.

2. Arany. I., and L. Szoda. An Improved Method for Reducing the Bandwidth of Sparse
Symmetric Matrices. Information Processing 71. Proceedings of IFIP Congress 71, IFIP,
August, 1971, pp. 1246-1250.

3. Branin, F.H. Jr. The Algebraic-Topological Basis for Network Analogies and the Vector
Calculus. Tech. Rept. TR 00.1495, Systems Development Division. IBM. July, 1966.

4. Cuthill, E.. and J. McKee. Reducing the Bandwidth of Sparse Symmetric Matrices. Proc.
24th Nat. Conf. of the ACM. Association for Computer Machinery. 1969. pp. 157-172.

5. Deo. N.. Graph Theory with Applications to Engineering and Computer Science.
Prentice-Hall. Inc.. 1974.

6. Duff. I.S. Recent Developments in the Solution of Large Sparse Linear Equations. In
Computing Methods in Applied Sciences and Engineering, R. Glowinski and J.L. Lions.
Eds., North Holland Publishing Company. 1980, pp. 407-426.

7. Eisenstat. S.C., M.C. Gursky, M.H. Schultz. and A.H. Sherman. Yale Sparse Matrix Package
I. The Symmetric Codes. Research Report 112, Dept. Of Comp. Sci.. Yale University. July.
1977.

8. George. A. Computer Implementation of the Fimte Element Method. Tech. STAN-CS-71-
208, Computer Science Dept.. Stanford University, 1971.

9. George A.. and J.W.H. Liu. User Guide for Sparspak: Waterloo Sparse Linear Equations
Package. Research Report CS-78-30, University of Waterloo, 1978.

10. George, A.. and J.W.H. Liu. "An Impiementation of a Pseudo-Peripheral Node Finder."
ACM Trans. on Matn. Software 5 (1979), 139-162.

11. George, A., and J.W.H. Liu. "An Optimal Algorithm for Symbolic Factorization of
Symmetric Matrices." SIAM J, Comput. 9, 3 (August 1980). 5S3-593.

12. George, A.. and J.W.H. Liu. Computer Solution of Large Sparse Positive Definite
Systems. Prentice-Hall Inc.. 1981.

13. Gibbs. N.E.. W.G. Poole Jr., and P.K. Stockmeyer. "An Algorithm for Reducing the
Bandwidth and Profile of a Sparse Matrix." SIAM J. Numer. Anal. 13. 2 (April 1976k.

14. Irons. B.M. "A Frontal Solution Program for Finite Element Analysis." International
Journal for Numerical Methods in Engineering 2 (1970), 5-32.

15. Law. K.H., and 5.1. Fenves. Sparse Matrices. Graph Theory. and Reanalysis. Proceedings
of the First International Conference on Computing in Civil Engineering, American Society of
Civil Engineers, 1981.

16. Liu. W-H., and A.H. Sherman. "Comparative Analysis of the Cuthill-McKee and the
Reverse Cuthill-McKee Orderinr Algorithms for Sparse Matrices." SIAM J. Numer. Anal. 13.
2 (April 1976). 198-213.

20

17. Maurer. V. D.. anJ T.G. Lewis. "Hash Tabi: NMcthods. 4f.14 CoSpt~ .ufve's 7.
'Mlarch !9 5). 5-19.

18. Rose, D.J. A Graph- Theore i I Stud * of Ct NumxeriCal Sclluzimr of Sparst, Poszinv~ D-fnijlt
Systems of Linear Equations. In Graph. Theary and Compuing. R.C. Rtad. Ed..Acadtaic
Press.,~2 pp. 163-217.

19. Rose. D.J.. R.S. Tarjan. and G.E. Lueker. -Algorithmuic Aspects of Vertex Elimination or
Graphs.- SIAM J. Comput. 5. 2 iune lq'6i. 266-263.

20. Speelpenning. B. The Generalized Elem-ient Method. lech. Rtpt. UIUCDCS-R---46. Dept.
of Computer Science. UniversitN of Illinois at Urbana-Champa,.en. November. 1107,S.

21. Szabo. B.A.. P.K. Basu and D.A. Dunavant. Qua!,,,\ Control in Finite 'Elemtent Analvsis.
Proceedings of th,- First International Couftrence ona Comvntin: :I! Ci'.:1 ;E'liner~ng. Anrc
Society of Civil Enigneers. 1qS1.

22. Tarjan. R.E.. and A.C.C. Yao. "Storing a Spar-se Table.- Corrnnicalions of heACAV,
22. 11 iNovember 1979). 606-611.

23. Vebltn. 0.. Colloquiumr Public1ations. Volumet V. Part 11. Second Edu,.on: Aral ys.s
Situs. Amer7ican Mathematical Socie:%y. 1031I.

24. Yannakakis. V, -Conputlinz the, Minimum Filli-in is NP-Complete.- 5; A.V J. A'!g. Oisc.
Mern. 2. 1 (March 1951'. -7-9.

21

-'Nod o:

Linear Tricnguiar Element

Nodal
Variable 4

Quadratic Trianaular Elemnen

Nodal
Variable Noden Edge

Linear Rectangular Element

FINITE ELEMENT MESH FINITE ELEMENT SOLUTION GRAPH

Fi,-urc 1: F;n itc Eiciint Mesh,~ a rid lz !(A ,,o: ;nIed
FInjIC ELtmci Soilution Graph

CO ,NT : { F.:- ".. Y i"nto LDL I

(2)
Se , =K

(-_

FzR rC ."- --iU ;I r; Z

L = 11 D ;

F2 ; = ~ k - L --:. ;

: ; (')... . ,)

_,=--, (for- row -

END; (- for column ,I

END.

Fagure 2. X:trtx Fazr~zat -en

r ..

23

Finite Element Connectivity Graph

.

(a) Finite elemnent mesh with trianular elements

- .Finite Element Mesh
I I
I I

- Finite Element Connectivity Graph

(bi Finite element mesh with rectanguiar elements

4--3- Dimensional Finite Element Model

Finite Element Connectivity Graph

(c) 3-dimensional finite clement mode) with
rccianular volumetric cicments

Fi-urc 3: Finite Element l.del and Its A--oicaied
Finite Ecrncnlt Cunnectivity Graph

24

(a) Finite cicmeni meish with n d~flsic~n3I

elements connectc-d throu ,h boundaries
other than those of (n-II boundaries

Linear
Element

(b, Mecsh %with finite ciernents of different dimni,nos

Fi,,urt' 4: Finite Elerncent .\iudeck %%ith Uncommron Cnl~~iI.

tal A 5 biy 5 finite element -rid (bi Connecti~ityv graph of the
5by 4 finite ekieen -rid

50484380
49 46 44 25

4745 40 ; 33 2924. 2016

Element
Number Y 39 32" 23; /5 1 91

(c) The ordering of finite elements

Fi,,ure 5: Ordering the Finite Elements b%
the Cut hil)-M\ckce Akorithm

- - 7

LO 7. Cn

C'. CN C, IN -

m r-
- N NI CN

* o 0 *

- ~15 - - (N N

-l - 7.- -

-* C I- ,

-n - FL;-

-% viF

27

1111/ 1__(i) linear element

(ii) quadratic element

(iii) cubic element

(a) 5 b% . regular mesh -with trianaular finite elements

Mi linear element

(ii) quadratic element

\ V (iii) cubic element

(b, L--%hpacd mesh with iriafI-uIar finitt eicnicnts

Fi.-ure 7: Finite Elcmerit Models

A/ ,,

28

(i) linear element

I , - -

-I--I.-(ii) quadratic element

(iii) cubic element

() Cross-shaped mesh with rectangular finite elements

(i) linear element

(ii) quadratic element

(iii) cubic element

(d) 2 by 2 by 2 block with 'olumetric finile , cmcnts

Figure 7: Finite Elcment .M dcls(cont.)

29

noCe n-Mer .oe Ac. notes

\\4

2 1i 4

E. E25 234 64 1 2 =
I z C 5 2 3 4E

6 3 5

(i) Finite element (ii) Node connection table
solution graph

Node No. 1 2 3 4 5 6

IA

JA 21 411 1 3 4 -5 2 51 61 1 21 51 2 3 4 E 3 E,

(iii) Node-node adjacency structure pair (IA,JA)

(a) Adjacency structure pair of finite element solution graph

Element Adj. elements

II~ IIlI

l!I I IV
IV III

(i) Finite element (ii) Element connection table
connectivity graph

Element No. I II III IV

IA

JA I I II I Id IIII

(iii) Element-element adjacency structure pair (IA,JA)

(b) Adjacency structure pair of finite element connectivi graph

Figure 8: Examples of Adjacency Structure Pair

30

0 -c C cc C '0

o 00 00 00 000

, 0 P m) 0Qto' l m0CN
C14 V4 -a - - C1 a L

V?

a) it! 0 - m0 r l . %c
vi -

L -. INNN

- --

.€: Eu L c q ct0 N0

C Zl)

So 0-t

In

C0 omm

I.. I. U , , '

L L.

m it- -~ u

. - u (7 U u C- u

cc

*~~ CC >~0CT~ 0~

04J~~~~j DO~ C Nl CTt

31

0 K 0 w w c ?r-U In r-m
aC-ft M o

-00 000 000 000

- 0- ' r- C M r- LO- 0 C
0 00 I % Mr- 0c" 0O ~L 0

- '. -00 000 000 000

MOV ;WWW 000o0 M a) 00 ~)N C 000
-,0 0

a) 0- 0 c
0 .l

.c 87 0 I -Vw 0 N m

u n -q C4 C4 - C

0, N- m -
EL Z

0

rL 0 0 co 0 m 0 m~

vC a, 00 m

0 to w N w

9 0 - M co 00 '

'$~ W ~ i N -? Io o o)

a) 0 0m4 wC 0 m
cU N

00

-,u

Z 0- 0

.- !-.0O - t L n r

ZL ila) N) ~ C.) ON~~~

0 cl4 - -~ C14 m

zo-

OOLL

CL ;) 'a

0 a 3 DOf D O

Z~, 0 0

a, 0 (c a .

ul WL .. UE V)i E N f

32

Appendix I. Fortran Computer Program for Labelling the Nodal Variables

Given the orderinc of the finite elements, the subroutine listed below labels the nodal variables

in the finite element mesh.

C/ft Subroutine NODORD
C/, Give the order:ng of tre finite elements, ELIMf
C/ this subroutine NCDOR' labels the nodal variables
C/ft as follows

/. Determine the valency of each node, given the
C/f element-node zncidence table :NC
C/ 2. Label the nodes of each finite element, in decreasing
C/ order of their valencies (linear -isert.. . is used)
C/f 3. Reverse the node ordering obtalned from step 2. f

C/ft nput Variables
C/ !NC - node-element INCidence table
C/ft EPM - ELement PerMuzation vector
C/,t NV - Number of Vertices in the finzte element mesh
C/ NVE - Number cf Vertices per finlte Element
C/ NE - Number of finite Elements in the mesh
C/ft
C/ Output Variables
C/- PERM - node PERMutatior. vector
C/
C/* WorkIng Variables f

C/f INVP - INVrse Permutation vector
C/ NDVL - NoDe VaLencv vector
C/ft

SUBROUTINE NCDCRD(EL, IN, iNVP, NDV., NV, NVE, NE)
!MLIC:T INTEGER (A-Z)
DIMENSION INC(SE,NV;E), PERM(NV), INVP(NV , ELPY.(NE) , NDVI(NV)

C/*
C/ft t i ali4zaton

C/,
DO 10 K = i,NV
PERM(K) = 0
INVP(K) = 0
NDVL(K) = 0

10 CCNT:NUE
C/ft

C eternmne node valency
0/ft

DO 20 = l,NE
DO 20 K = 1,NVE

NODE !NC(i,K)
IF(NCDE.EQ.0) GOTO 20
NDVL(NODE) = NDVL(NODE) 1 :

20 CONT:NUE
C/ft

C/f Enter the elements sequentially following their crderinas
C/ft

NXTNCD =0

33

DO 7-50 1 I ,NE
=LEm ELPM(I)
START =NXTNOD + 1
DO 110 K = 1,NVE

NODE = INC(ELEM, K)
':F(INVP(NODE).NE.0.OR.NODE.Eg.0) GOTO 110
NXTNOD = NXTNOD - I
PERM(NXTNOD) = NODE
!NVP(NODE) = NXTNOD

110 CONTINUE

C/' Local node ordering :nodes are sorted in decreasi.ng
Cl' order of their valencies using linear insertlon

IF(START .GE. NXTNOD) GOTO 150

120 = START

PERMI(= PERM(K)
NDV1LK = NDVL(PERMK)

130 IF(L .LT. START) GOTO 140
PERML = PERM(L)
NDVLL = NDVL(PERKL)
IF(NDVLL .GE. NDVLK) GOTO 140

PERM(L+1) = PERXL
L =L - 1

COTO 130
140 PERM('-+I) =PERMK

IF(K .LT. NXTNOD) GOTO 120
150 CONT:NUE

C/ *
C* Now, reverse the node ordering

C/*
MXID = NV/2
j = MV
DO 160 K = I,KXID

I = PERI!(K)
PERM(K) = PERIM(J)
PERM(J) = I
3j

160 CONTINUE
RETURN
END

34

Appendix I. Fortran Computer Program for Generating the Adjacency Structure Pair of

Element-Element Connectivity

Given the element-node incidence table, the following set of subroutines determines the

adjacency structure pair of element-element connectivity of an arbitrary finite element mesh.

These subroutines are included only for illustrating how the element-element adjacency may be

generated if the mesh generator produces only the element-node incidence table. The subroutines

are not efficient in storage. in that space is provided for the entire symmetric node-node

adjacency table, denoted by NEL. Since this table is very sparse, the function HASH couId be

replaced by one that exploits sparsity (and the variable NEDGE reduced accordinglv . or other

efficient techniques for storms sparse tables may be used2.

C/ft

C/* Subroutine SETUP
C/f Purpose : SETUP is the main subroutine to generate the *

C/ft element-element adjacency structure from tne
C/ element-node incidence table, :NC, for a planar
C/ finite element mesh.

C/ft :nput Variables
C/* :NC - element-node incidence table

C/ft Glcal Varia!Des
C/* NE - no. of elements in the mesh
C/ NV - no. of nodes in the mesh
C/ft NVE - no. of nodes per element
C/' NEPSi - (NE - i)
C/ NEDGE - ocssible maximum no. of edoes in the solution graph

= NV * (NV-1) / 2
EDGM X - total no. of edges in the solution raph

C/' EDGPLI - (EDGMAM + 1) f

C/' NELS - counter -or the edge-element structure pair
C/* MAXSUB - max. susrit used in the element-element
C/f adjacency structure pair (see sutroutlne ELMAJ) *

Z/* utzut:
C/* The element-element ad:acent structure tair (:;,JA) is stcrez -
C/' in the array POL from location ZOC:A to (lCCJA-ZAhsS-l)
C/* The array :A is stored in PCOL(LOC:A) to PCL(LOC:A-NE);
C/. tne array .A is stored ir. PCCL(LCCJA) to =COL(L.CJA MAXSUB-). .

C/* Su'rout-nes used
C/ EDGSET, EDGBLT, ELMADi
C/*

SUBROUT:NE SETWP(:NC, POOL)
:MPL:C:T :NTE3ER (A-Z)
COMMON /SYSTEM/ NE, NV, NVE, NEFLSI

35

COMMON /GRAPH/ NEDGE, EDGMAX, EDGPL:, NELS, MAXSUB
COMMON /ISET/ IN, i, DEBUG
LCGICAL DEBUG
DIMENSION INC(NE,NVE), POOL(l)

C/-f
C/* Phase I : to set up the edge-element adiacency structure
C/-

LOCNEL = 1
LOCSTA = LOCNEL + NEDGE
CALL EDGSET(INC, POCL(LOCNEL), POOL(LOCSTA))

C/*
C/- Phase 2 : to build the edge-element adjacency

structure pa:r
C/ft

EDGPLI = EDGMAX I1
LOCEL = LOCSTA + EDGPLI
LOCPOS = LOCEL NELS
CALL EDGBLT(INC, POOL(LCCNEL), POOL(LCCSTA), PCOL(LOCEL),

POOL(LOCPOS))
C/ft
C/ Phase 3 : to build the element-element adjacency
C/* structure pair
C/-

LOCIA = LOCPOS
LOCiA = LOCIA + NELSI
CALL ELMALJ(INC, POOL(LOCNEL), PCOL(LOCSTA), POCL(LOCEL),

* POOL(LOCIA), POOL(LOCiA))
RETURN
END

C/* Function HASH
C/ Purpose : to determine the location of an edge in
C/ the symmetric node adjacency matrix
C/ftf

C/ft Input Variables
C/f N!, N2 - nodes in the mesh (or graph)
C/ft
C/ Output Variable:
C/. HASH - location of edge (N!,N2) in the symmetr:c node
C/ adjacency matrix
C/

INTEGER FUNCTION HASH(N1,N2)
IMPLICIT :NTEGER (A-Z)
J = AXAXC(N!,N2)

= AY.INO(N1,N2)
HASH = ((J-2)*(J-l))/2 - I
RETURN
END

C/ Subroutine EDGSET
C/f Purpose : to set up counter START of the edge-element
C/ft adlacenzy structure pair (START, EL)
C/t {EL will be determined in subroutine EZGELT.}
C/t
C/ft Input Var~able : f

36

C/- INC - element-node incidence zarleC/*
C/* Outpuz Variables ft

C/ NEL(iASE(N1,N2)) - edge no. assigned to node pair (N!,N2)
C/. { Only edges with more than one incident element
C/. are assigned a number. I
C/. START - starting position for the edge-element adcacency
C/* structure pair f

C/* { START(k !) - START(k) = no. of elements adjacent f

C/ to edge k } f

C/ft
C/* Intermediate Variable ft

C/f NEL(FASH(Nl,N2)) - in step 1, the array is a ncde-ad:acenz: ft

C/* matrix denoting number of elements into edge (N!,N2)
C/ft

SUBROUTINE EDGSET(INC, NEL, START)
IMPL:CIT 7NTEGER (A-Z)
COMMON /SYSTEM/ NE, NV, NVE, NEPLSl
COMMON /GRAPH/ NEDGE, EDGMAX, EDGPL1, NELS, MAXSUB
DIMENSION INC(NE,NVE), NEL(NEDGE), START(l)

C/*
C/ Initialization
C/*

DC 5 I = 1,NEDGE
NEL(I) = 0

5 CONT:NUE
C/*
C/* Step 1 : to build the node adjacency matrix
C/

DO 10 I = ',NE
NN = NVE
DO 10 J = 1, NN-1

N! = :NC(I,J)
IF(N1.E2.0) GOTO 10
DC 10 K = j+I,NN

N2 = !NC(I-,K)
IF(NI.EQ.N2 .OR. N2.EQ.0) GOTO i0
EDGE = HASH(N1,N2)
NEL(EDGE) = NEL(EDGE) - I

10 CONTINUE
C/
C/* Step 2
C/t (1) to set up counter START for the
C/. edge-element adjacency structure
C/f (2) to assign a number to the edges (with two
C/* or more incident elements).
C/*

POSIT = 0
NELS = 1
DO 15 I = 1, NEDGE

IF(NEL(I) .LE. 1) GOTO 14
POSIT = POSIT + 1
START(POS:T) = NELS
NELS = NELS + NEL(I)
NEL(I) = POSIT

G1TC 15
i4 N7-L(1) =0

37

i5 CONT:NUE
EDGMAIX = PCSIT
START(EDGMA X) = NELS
RETURN
END

C/* Subrou:ine EDGBLT
C/ Purpose : to build the array EL of the edge-element adjacency

structure pair (START, EL).
C/ftf
C/ft Input Varbales
C/. INC - element-node incidence tale
C/* NEL(k) - edge no. assigned to node pair (N1,N2)

k = HASH(N!,N2) I
C/ START - starting pos:tion for the edge-element adjacency
C/ft structure pair
C/ft { START(k 1) - START(k) = no. of elements adjacent f

C/* to edge k } f

C/*
0/* Output Variable
C/* EL - edge-element adjacency structure pair f

C/* The set of elements incident to edge k is stcred
C/* in EL(START(k)) to EL(START(kl)).)
C/*
C/ Work:Ing Variable
C/* POSIT(k) - pointer to current empty posit:on in EL for edge k

SUBROUTINE EDGBLT(INC, NEL, START, EL, POSIT)
IMPLICIT INTEGER (A-Z)
COMMON /SYSTEM/ NE, NV, NVE, NEPLS1
COMMON /GRAPH/ NEDGE, EDGMAX, EDGPL1, NELS, MAXSUB
DIMENSION INC(NE,NVE), NEL(NEDGE1, START(EDGPLI), EL(NELS),

POS:T(EDGMAX)
C/*
C/* :nitialize working vector POSIT
C/*

DO 10 I = 1, EDGMAX
POS:T(I) = START(I)

IC CONTINUE
C/
C/ Fill edge-element adjacency EL
C/

DO 20 I = 1,NE
NN = NVE
:C 20 J = , NN--

N! = :NC(:,J) !node NI!
IF(N1.EQ.0) COTO 20
DO 20 K = J+l, NN

N2 = INC(I,K) :node N2!
IF(N2.EQ.0 .OR. NI.EQ.N2) GOTO 20 !check self loop:
EDGE = HASH(Nl,N2) !location in NEL
IF(NEL(EDGE) .EQ. 0) GOTO 20
EDGACT = NEL(EDGE) !edge number!
EL(POSIT(EDGACT)) = I !assign I tc EL!
POSIT(EDGACT) = POSIT(EDGACT) 1 i !update PCS::icn:

20 CONTINUE

;.-

38

RETURN
END

C/a Subroutine ELMADJ
C/a Purpose to set up the element-element adjacency structure a

C/* pair (IADJ,JADJ). a

C/a *
C/a Input Variables :
C/a INC - element-node incidence table
C/* NEL(k) - edge no. assigned to node pair (N1,N2) a
C/* { k = HASH(NI,N2) a

C/a START - starting position for the edge-element adjacency a

C/a structure pair
C/a { START(k+l) - START(k) = no. of elements adjacent a

C/* to edge k } a

C/* EL - edge-element adjacency structure pair
C/* { The set of elements incident to edge k is stored a

C/a in EL(START(k)) to EL(START(k-I)). a

C/.a
C/* Output Variables a

C/a (IADJ,JADJ) - element-element adjacency structure pair aC/*

SUBROUTINE ELMADJ(INC, NEL, START, EL, IADJ, JADJ)
IMPLICIT INTEGER (A-Z)
COMMON /SYSTEM/ NE, NV, NVE, NEPLSI
COMMON /GRAPH/ NEDGE, EDGMAX, EDGPLI, NELS, MAXSUB
COMMON /IOSET/ IN, I, DEBUG
LOGICAL DEBUG
DIMENSION iNC(NE,NVE), NEL(NEDGE), START(EDGPL!), EL(NELS),

a IADJ(NEPLSi), *7ADJ(1)
C/a
C/a Initialize IADJ(l)C/-

IADJ(:) = (
C/

a

C/a For each element, find all incident elements and
C/a queue them in JADJ
C/a

DO 50 I ,NE
ELMENT = I for element 1!
L1 = IADJ(I)
FILL = 0
NN = NVE

D 40 J = 1, NN-l
N! = INc(I,J) !ncde NL!
:F(Nl.E2.0) GOTO 40
DO 4C K = J~l, NN

N2 = INC(:,K) !node N2!
IF(N1.EZ.N2 .OR. N2.EQ.0) GCTO 40 !check self lcop!
EDGE = HASH(N:,N2) !location in NEL!
IF(NEL(EDGE).EQ.C) GOTO 40
EDGNUM NEL(EDGE) !edge number!
BEGIN = START(EDGNUM) !for all elements
END = START(EDGNUM-1) - I incident to
DO 30 IEL = BEGIN, END ! edge EDGNUM!

ELM = EL(:EL) a neigh. element:

39

IF(ELM.EQ.ELMENT) GOTO 30 !samne as element 1?!
L2 =Ll + FILL
IF(FILL.EQ.O) GOTO 20

DO 10 JJ = U, L2-1. !check If there
IF(JADJ(JJ).EQ.ELM) GOTO 30 is a duplication

10 CONTINUE in li.st
20 JADJ(L2) =ELY ~ !queue it in JADJ!

FILL =FILL + I
30 CONTINUE
40 CONTINUE

IADJ(ELMENT+I) = IADJ(ELMENT) +FILL !update IADJ!
50 CONTINUE

MAXSUB = IADJ(NEPLSI)
IF(.NOT.DEBUG) RETURN

Cl*
C/* Print out results

C, *
WRITE (10,1100)
DO 60 I = 1,NE

Li = IADJ(I)
L2 =I-ADJ(-'-) -
IF(L2.LT.L.) GOTO 60

WRITE(IO..lOO0) I, Li, 1.2, (jADJ(K), K=Ll,L2)
6O CONTINUE

RETURN
1000 FORM1AT(T5, 14, TIO, 16, TI8, 16, (T30,1016))
1100 FORMAT(1H1, T2, 'ELEMENT', T-10, 'IA(I' 18, 1IADj(I1)',

T30, 'JADj (NEIGHBOR:NG ELEMENTS) '/
END

UNCLASSIFIED
ECIJ'ITV CL AS5I FICATION OF T.IS PAGE (When Dote Entered)

REPORT DOCUMENTATION PAGE BEFRE COMLTI O
I REPORT NumSER 12. GOVT ACCIESSION NO. 3 RECIP:ENT'S CATALOG NUMaEl;

4. TITLE (ar'd S.btitrle) S. TYPE OF REPORT & PERIOD COVERED

A TWO-STEP APPROACH TO FINITE ELEMENT ORDERING Technical Report

6. PERFORMING ORG. REPORT NUMBER

7. AUTmOR(ej S. CONTRACT OR GRANT NUMBER()

Steven J. Fenves, Kincho H. Law N00014-76-C-0354 /

9. PERFORMING ORGANIZATION NAME AND ADORESS 10. PROGRAM ELEMEN,.PROJECT, TASK
Department of Civil Engineering AREA & WORK U-NIT NUMBERS

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research August 1981
Arlington VA 22217 13. NUMBER OF PAGES

39
IA. MONITORING AGENCY NAME I ADORESS(If dilferent from CoflirolntI Ofice) 1S. SECURITY CLASS. (of thle report)

UNCLASSIFIED
ISO. OO(CLASSIFfCATION/'OOWNGRADING

SCHEDULE

I, DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (o the obetrocl en eled I 1 Block 20, It different from Report)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on rteveree aide It noccery and Identify by block number)

Two-step ordering; finite element ordering; sparse matrices; graph-theiretic
approach; solution graph; connectivity graph; Cuthill-McKee algorithm;
RCM algorithm; execution time; fill-in entries.

, ABSTRACT (Continue an reree iJdo It nec...ery mid identify by block number)

A two-step approach to finite element ordering is introduced. The scheme
involves ordering of the finite elements first, based on their adjacency,
followed by a local numbering of the nodal variables. Th,_ ordering of the
elements is performed by the Cuthill-McKee algorithm. This approach takes
Into consideration the underlying structure of the finite element mesh, and
may be regarded as a *natural* finite element ordering scheme. The experimen-
tal results show that this two-step scheme is more efficient than the
reverse Cuthill-McKee alQorithm Angligd l-ir~rtlv tn tho nodoe Jn +m a -V r,

DID 1473 EDITION Ol I NOV G IS OBSOLETE UNCLASSIFIED
S/N 0102.LF-014.6601 SECURITY CLASSIFICATION OF TNIS PAGE ("on Dole Efetre,

UINCLASS IFIE_
SECURITY CLAS,.A VICAT ION OF THIS PAGE (When Data Entered)

F20 Abstract (Continued)

both execution time and the number of fill-in entries, particularly when
higher order finite elements are used. In addition to its efficiency, the
two-step approach increases modularity and flexibility in finite element
programs, and possesses potential application to a number of finite element
solution methods.

UNCLASSIFIED

SECURITYr CLASSIPICATION OF-IMIS MAGE'O W~.,te r~d)

